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Abstract. The possibility that higher dimensional field theories are broken spontaneously, through the
usual Nambu-Goldstone mechanism, to 4-dimension is explored. As a consequence, vector Goldstone bosons
can arise in this breaking of Lorentzian symmetry from higher dimension to 4-dimension. This can provide
a simple mechanism for reduction to 4-dimension in theories with extra dimensions.

In the 4-dimensional field theory, the spontaneous symme-
try breaking is usually generated by the vacuum expecta-
tion values (VEV) of elementary scalar fields or fermion
bilinears in the scalar combination so that the Lorentz in-
variance is preserved. Then the fields, which are partners
of these fields under the broken symmetry generators will
give rise to massless Goldstone bosons [1,2]. In the case
of internal symmetries, the Goldstone bosons are either
scalars or pseduscalars while in the case of supersymme-
tries, the Goldstone bosons are fermions, the Goldstinos,
which are supersymmetric partners of the auxiliary scalar
fields, F−term or D−term, which develop VEV [3]. But
there are no vector Goldstone bosons in these cases be-
cause they are not partners of scalar fields under the in-
ternal symmetry operations or space-time symmetries in
4-dimensions. However, in the theories with extra dimen-
sions [7], the vector fields of four dimension can be part-
ners of scalar fields, under the Lorentz transformation in
higher dimensional theory. This gives rise to the possibil-
ity of vector Goldstone bosons if we break the Lorentz
symmetry of higher dimensional theory spontaneously to
that of 4-dimension [6]. This can also provide a simple
mechanism for the reduction of higher dimensional theory
to the physical 4-dimensional theory. In this paper we will
explore this possibility and study the properties of these
vector Goldstone bosons.

Consider a simple case of 5-dimensional field theory
where a vector field, denoted by φA, will have 5-compo-
nents, A = 0, 1, . . . 4. The first 4 components, φ0, . . . , φ3
transform as a vector under 4-dimensional Lorentz trans-
formations while the last component, φ4 is a scalar. Sup-
pose that in analogy with the 4-dimensional theory the
self interaction of φA is of the form,

V (φA) =
µ2

2
(
φAφ

A
)
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λ

4
(
φAφ

A
)2

(1)

where µ2 and λ are some parameters. The minimal of this
potential is determined by the conditions,

∂V

∂φA
=

[
µ2 + λ

(
φBφ

B
)]
φA = 0, A = 0, 1, . . . 4 (2)

Thus if any one component of φA is non-zero we will have,[
µ2 + λ

(
φBφ

B
)]

= 0 (3)

For the case, µ2 > 0, φ2 ≡ φBφ
B is space-like and we can

choose,

φ4 = v ≡
√
µ2

λ
and φµ = 0, µ = 0, . . . 3 (4)

This breaks the Lorentz symmetry of 5-dimensional the-
ory, SO (4, 1) to that of 4-dimensional theory, SO (3, 1) .
To find the Goldstone bosons in this case, we write

φ′
A = −vA + φA, where vA = δA4v. (5)

The quadratic terms in the potential is of the form,

V2 = λ (v · φ′)2 +
1
2
φ′2 [

λ (v · v) + µ2] = λ|v|2φ′2
4 (6)

Hence, φ′
µ, µ = 0, . . . 3 are massless Goldstone bosons and

in this case they transform as vector meson under the
4-dimensional Lorentz transformations. In other words,
these are the vector Goldstone bosons. It is easy to see
that for the case µ2 < 0, φ2 is time-like and the sym-
metry breaking is from SO (4, 1) down to SO (4) . This
is not physically interesting, because the resulting theory
will not have Lorentz symmetry in 4-dimension.

To study the broken symmetry generators, we write
down the commutation relations between the Lorentz gen-
erators WAB and the vector fields φC ,

[WAB , φC ] = igAC φB − igBC φA,

A,B,C = 0, 1, . . . 4 (7)

where gAB = (1,−1,−1,−1,−1) is the metric for the 5-
dimensional space. In particular, we have

[Wµ4, φν ] = −i gµνφ4, µ, ν = 0, 1, 2, 3 (8)

Then from the usual Goldstone theorem [1], φµ, µ =
0, 1, 2, 3 are massless and Wµ4, µ = 0, 1, 2, 3 are the broken
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generators. It is not hard to see that these vector Gold-
stone bosons φµ coupled to the densities of the Lorentz
generators, Mαµ4. This is analogous to the case of sponta-
neous breaking of chiral symmetry where Goldstone pions,
πα,couple to the axial vector currents Aαµ, which are the
densities of the broken generators.

If the vector Goldstone boson can couple to the fer-
mion, the interaction will be of the form

LV ψ = fψγAψφ
A (9)

where the 5-dimensional gamma matrices are of the form

γA =
(
γ0, γ1, γ2, γ3, iγ5) (10)

Then the spontaneous symmetry breaking, in Eq(4), will
contribute to the fermion masses. Note that the γ5 factor
in the fermion bilinear can be removed by a chiral rotation
on the fermion field. On interesting feature here is that the
Goldstone mode will have coupling to some combination
of vector and axial vector currents. Physical consequences
of this type of coupling might be of interest phenomeno-
logically. Similarly, a coupling of φA to a scalar field of the
form,

LV φ1 = f ′φAφAφφ

can give contribution to scalar mass and coupling of the
Goldstone boson of the form,

φµφ
µφφ.

Another possible type of coupling is the derivative cou-
pling,

LV φ2 = gφφA∂
Aφ

which can give a coupling of the form,

φφµ∂
µφ.

in 4-dimension.
The generalization to six or higher dimensional the-

ory is straightforward. But the structure of the symme-
try breaking will be more complicate. For example, to
reduce 6-dimensional Lorentzian symmetry, SO (5, 1) to
SO (3, 1) of the 4-dimensional Lorentz symmetry, we can
use two 6-dimensional vector fields in analogy with the
breaking of the internal symmetries. It is also possible to
break the higher dimensional Lorentz symmetry by using
higher rank tensor fields [5]. It is conceivable that higher
dimensional Lorentzian symmetry can be broken down to
SO (3, 1)×G where G is some compact internal symmetry
group.

We can also explore the cases where these vector fields
in higher dimension also carry some internal quantum
numbers. Again consider the simple case of 5-dimensional
theory. Let φAi , i = 1, 2, . . . n be a set of vector fields which
transform as fundamental representation under the inter-
nal symmetry group SO (n) .The effective potential is then
of the form [5]

V =
µ2

2
(
φAi φAi

)
+
λ1

4
(
φAi φAi

)2

+
λ2

4
(
φAi φAj

) (
φBi φBj

)
(11)

which has the symmetry, SO (4, 1) × SO (n) . Using the
results from the breaking of the internal symmetry [5],
we can deduce that for the case λ2 < 0 the symmetry
breaking has the pattern,

SO (4, 1) × SO (n) → SO (3, 1) × SO (n− 1)

Presumably, there will be 1 vector Goldstone boson for the
broken generators,Wµ4, and n−1 scalar Goldstone bosons
for the broken internal symmetry generators. Thus in this
simple case there is no connection between Lorentzian and
internal symmetries. It is conceivable that in more compli-
cate cases there might be some coupling between internal
and Lorentzian symmetry. Recall that in the usual sponta-
neous symmetry breaking of the chiral SU (3)L×SU (3)R
symmetry in the low energy hadronic interaction down to
SU (3)V , [4] the broken generators are the axial charges
which is the linear combination of left and right gener-
ators. If we replace replace one of the the internal sym-
metry by Lorentzian symmetry, it is possible that some
combination of Lorentz symmetry and internal symmetry
generators are broken. In this case, the vector Goldstone
bosons can carry the internal symmetry quantum num-
bers.

So far we have used elementary fields to breaking the
symmetry spontaneously. It is clear that similar breaking
can be generated by the composite fields. For example, in
5-dimension condensation of the fermion bilinears of the
form, 〈

ψγAψ
〉

= vδA4 (12)

can also breaking the Lorentzian symmetry and gives vec-
tor Goldstone boson.
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